Куда поехать с ребёнком летом?
6 лучших идей для семейного путешествия!
Задания 1-го тура XV олимпиады по математике для 9 класса
1 тур XV олимпиады по математике прошел с 15 января по 6 февраля 2024 года
Задача №1
Периметр прямоугольного треугольника равен 30, а длины всех его сторон являются целыми числами. Чему равна площадь треугольника?
(А) 30 (Б) 28 (В) 32,5 (Г) 28,5 (Д) 24
Тодоров Е. И.
Задача №2
Криптоаналитик Никита нашёл способ инвестировать деньги так, что в результате вложенная сумма либо увеличится, либо уменьшится на некоторый фиксированный процент. Никита вложил 125 рублей по этому методу, но сумма уменьшилась. Тогда он взял полученную сумму и вложил снова. Она уменьшилась вновь. После этого он опять её вложил, и она увеличилась. Наконец, Никита в четвёртый раз вложил полученную сумму, и она опять увеличилась. В результате у Никиты осталось 115 рублей и 20 копеек.
Чему равен тот фиксированный процент, на который сумма увеличивается или уменьшается за одно вложение?
Чему равен тот фиксированный процент, на который сумма увеличивается или уменьшается за одно вложение?
Тодоров Е. И.
Задача №3
Катя выписала все числа, состоящие из тридцати одной семёрки и одной тройки. Сколько среди чисел Кати не делятся ни на 11, ни на 37?
(А) 14 (Б) 13 (В) 11 (Г) 10 (Д) 9
Тодоров Е. И.
Задача №4
Матвей выписал всевозможные дроби (правильные и неправильные), числителями и знаменателями которых являются различные целые числа от 1 до 8. Дроби, значения которых меньше 1/2, он подчеркнул чёрным, а остальные - красным. На сколько дробей, подчёркнутых красным, больше, чем подчёркнутых чёрным?
(А) на 28 (Б) на 30 (В) на 31 (Г) на 32 (Д) на 33
Тодоров Е. И.
Задача №5
От Палкино до Скалкино проходит шоссе длиной 100 км. Велосипедист едет в гору в два раза медленней, а под гору в два раза быстрей, чем по ровному участку дороги. Сколько километров он проехал по ровной дороге, если и в гору, и под гору он проехал одинаковое количество километров, при этом, ровно 1/6 времени своей поездки он ехал под гору?
(А) 10 (Б) 20 (В) 30 (Г) 40 (Д) 60
Тодоров Е. И.
Задача №6
В игровой комнате детского сада «Геометрёнок» решили постелить два ковра. Но в доставке привезли ковры неправильного размера, поэтому воспитательница Татьяна Николаевна пытается по разному положить их в комнате. Оказалось, что стороны ковров целые и меньше длины любой стены, а также что если положить ковры вдоль любой стены так, чтобы углы разных ковров лежали в разных углах комнаты, а длинные стороны ковров были параллельны длинным стенам комнаты, площадь пола, накрытого коврами в два слоя, будет всегда одинаковой и ненулевой.
Чему равна минимальная площадь участка пола, который никак не получится покрыть коврами, если комната имеет размеры 9*12 метров? Ответ укажите в квадратных метрах.
Чему равна минимальная площадь участка пола, который никак не получится покрыть коврами, если комната имеет размеры 9*12 метров? Ответ укажите в квадратных метрах.
Тодоров Е. И.
Задача №7
У Алисы есть бумага для оригами двух её любимых цветов: тёмно-синего и чёрного. Она хочет сложить пять различных фигурок так, чтобы среди них была хотя бы одна тёмно-синяя и хотя бы одна чёрная фигурка. Сколькими способами она может это сделать?
Тодоров Е. И.
Задача №8
Чему равно максимальное n такое, что квадрат нельзя разрезать на n квадратов поменьше (не обязательно одинаковых)?
Тодоров Е. И.
Задача №9
В строительном магазине можно купить гвозди поштучно. В честь Дня черепичной кровли, при покупке 16 гвоздей клиенту возвращают 25% их стоимости, в при покупке 5 гвоздей — возвращают 10% их стоимости. Строитель Сергей подсчитал, что если в этот праздник будет совершать покупки наиболее выгодным образом, то сможет на ту же сумму купить на 9 больше гвоздей, чем смог бы в любой другой день.
Какое максимальное количество гвоздей сможет купить Сергей на эту сумму в День черепичной кровли?
Какое максимальное количество гвоздей сможет купить Сергей на эту сумму в День черепичной кровли?
Тодоров Е. И.
Задача №10
В одной деревне жило пять семей: у одной была яблоня, у другой — две, ... у пятой — пять. Однажды добрый дух Пак решил помочь семьям, и посадить в их садах волшебные яблоневые семена, которые уже к утру вырастают в прекрасные деревья с очень вкусными плодами. Каждую ночь Пак может зайти ровно в четыре различных сада и посадить там по одному волшебному семечку.
Через какое минимальное количество ночей в садах всех пяти семей будет расти одинаковое количество яблонь?
Через какое минимальное количество ночей в садах всех пяти семей будет расти одинаковое количество яблонь?
(А) 5 (Б) 6 (В) 8 (Г) 10 (Д) 15
Тодоров Е. И.
Задача № | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Ответ | А | 20 | В | Г | Б | 12 | 30 | 5 | 48 | Г |

Пробная олимпиада
Пройдите пробную олимпиаду по математике для 1–9 классов.
1-й тур: 15 – 29 сентября
2-й тур: 20 июля
Олимпиада по математике
Девятнадцатая международная олимпиада по математике
Участвуйте в очередной математической олимпиаде от Систематики! Олимпиада проходит в два тура, по итогам которых победители получают ценные призы грамоты и дипломы.
Зарегистрироваться
Бесплатно