Задания 1-го тура XIV олимпиады по математике для 7 класса

Именные сертификаты и призы
2 тура в онлайн-формате
Для учеников 1-9 классов
1-ый тур XIV олимпиады по математике прошел с 18 по 30 сентября 2023 года.
Задача №1
Сколько существует нечетных трехзначных чисел с произведением цифр 18? (А) 6 (Б) 9 (В) 8 (Г) 10 (Д) 12
Задача №2
Лёша складывает из спичек треугольник по образцу (см. рис). Сколько спичек придётся потратить на фигуру со стороной равной 12? (А) 123 (Б) 126 (В) 129 (Г) 132 (Д) 135
Задача №3
Найти наибольшее a, для которого существует положительное b, такое, что (А) 0 (Б) 4 (В) 6 (Г) 9 (Д) 10
Задача №4
Двигатель ледокола расходует уголь. Есть два вида контейнеров с углем - маленькие и большие. Известно, что большой контейнер с углем вмещает в себя столько же угля, сколько целое количество маленьких. Для десятидневного путешествия необходимо три маленьких и три больших контейнера угля, а для шестидневного - 1 большой и 14 маленьких. На ледокол загружают минимальное возможное количество контейнеров угля так, чтобы суммарный вес угля тоже был минимальным, но не гарантировано, что последний контейнер будет израсходован полностью. Сколько маленьких контейнеров содержат столько же угля, сколько один большой? (А) 15 (Б) 16 (В) 18 (Г) 24 (Д) нет однозначного ответа
Задача №5
У Таи есть два прямоугольника с целыми длинами сторон. Она заметила, что площадь первого численно равна периметру второго, а площадь второго численно равна периметру первого. Площадь одного из прямоугольников равна 54. Чему может быть равна площадь второго? (А) 182 (Б) 110 (В) 121 (Г) 108
Задача №6
Софья Васильевна больше всего в жизни любит математику, своих внуков и печь пирожки. Однажды к ней приехали её внучата, и чтобы побаловать их, она решила испечь много-много пирожков и сложить их на большой поднос. Наблюдательная Софья Васильевна заметила, что если каждый внук возьмёт по одному пирожку, то на подносе их останется 49, а если бы каждый внук, наоборот, положил по одному пирожку на поднос, то их стало бы 63. Сколько пирожков достанется каждому внуку, если они поровну разделят пирожки между собой? (А) 6 (Б) 7 (В) 8 (Г) 9
Задача №7
Матвей выписал в порядке возрастания все пятизначные числа, состоящие из цифр 1, 2, 3, 4, и 5, взятых по одному разу. На каком месте оказалось число 32451? (А) 24 (Б) 56 (В) 58 (Г) 63
Задача №8
На одной чаше весов лежит гирька весом 23 грамма. У Кати есть набор гирек весом 1, 2, 3, 4, 5, ... грамм. Катя достаёт гирьки в порядке увеличения веса и кладёт их на какую-то из чаш. Какое минимальное количество гирек должна достать Катя, чтобы чаши пришли в равновесие? (А) 6 (Б) 7 (В) 8 (Г) 9
Задача №9
На фабрике произвели по 120 перчаток трех разных размеров. И правых, и левых всех размеров - по 180 штук. Какое максимальное количество нормальных пар перчаток гарантированно можно составить из этих 360? В нормальной паре есть как левая, так и правая перчатка и их размеры одинаковы. Все левые, и все правые перчатки одного размера одинаковы. (А) 30 (Б) 60 (В) 90 (Г) 120 (Д) 240
Задача №10
У вас есть набор палочек лежащих в виде сетки. Вы забираете палочки по одной начиная с самого верха. Чему будет равно значение полученное выражение? Пожалуйста, не забывайте про порядок действий. В ответ введите число.
Решения и ответы
Задача № 1 2 3 4 5 6 7 8 9 10
Ответ Г Б Г А Б В В Г Б 4863
Другие задания олимпиад по математике для 7 класса
Первый тур: 15 - 31 мая
Второй тур: 30 июня

Олимпиада по математике 2024

ШЕСТНАДЦАТАЯ МЕЖДУНАРОДНАЯ ОЛИМПИАДА СИСТЕМАТИКИ
Участвуйте в очередной математической олимпиаде от Систематики! Олимпиада проходит в два тура, по итогам которых победители получают ценные призы грамоты и дипломы.
Именные сертификаты и призы
2 тура в онлайн-формате
Для учеников 1-9 классов
Зарегистрироваться на олимпиаду по математике
Бесплатно